

S

Niagara Falls Storage Site Geophysical Survey Results

Science Applications International Corporation

Center of Geophysical Excellence – Harrisburg, Pennsylvania

www.quality-geophysics.com

M

E

E

Niagara Falls Storage Site Lewiston, NY

Niagara Falls Storage Site Lewiston, NY

General Hydrogeology

N

Former IWCS Area 1944 Oblique

R

DQOs for NFSS IWCS

Current Radioactive Landfill Boundary

Assess the Integrity of the IWCS

- Investigate Nonintrusively
- Delineate Landfill Contents
- Locate Potential Contaminant Plumes
- Examine Clay Cutoff Wall
- Identify Fractures/Faults/
 Seismic Pressure Points
- Identify Areas of Increased Water Saturation

Radioactive Storage

Plan View of NFSS IWCS Cross Section Locations

Plan View of NFSS IWCS Cross Section Locations

Why Use Geophysics at NFSS?

- **♦** Nonintrusive
- **♦** Cost-Effective
- **♦** Efficient
- Dense Data Coverage
- Increased Spatial Resolution
- Comprehensive

R

Geophysical Applications

Electromagnetics (EM)

Shear Wave

Seismic

Refraction

Multi-Technology Geophysical Surveys at NFSS Electrical Imaging (EI)

Magnetotellurics (MT)

Ground Penetrating Radar (GPR)

Seismic Reflection

F S S

Electromagnetics (EM-31)

EM-31 with Data Logger and GPS

Conductivity

- Water Saturation
- Voids/Sinkholes
- **♦** Metallic Signature
- Changes in Soil Properties
- Contaminant Plumes

Magnetic Susceptibility

♦ Metallic Signature

R

EM Results of the NFSS IWCS

Conductivity (mM/m)

(m) Magnetic Susceptibility (ppt)

Drain **Pipes**

Quadrature Phase

E

E

Magnetometer

FerrousMetallicSignature

Magnetic Gradiometer with GPS and Data Logger

Magnetometer Results of IWCS

Magnetic Gradient (nT/m)

Electrical Imaging (EI)

Electrical Imaging Setup

Measures Electrical Resistivity

- Water Saturation
- **♦ Voids/Sinkholes**
- **♦** Fractures
- Stratigraphy
- **♦ Soil/Bedrock Interface**
- Contaminant Plumes
- Metallic Signature

Electrical Imaging Results IWCS

Apparent Resistivity (ohm-meter)

Magnetotelluric (MT)

Measures <u>DEEP</u>
 electrical properties
 of the bedrock

22

Magnetotelluric Results IWCS

- **Seismic Pressure Points**
- GeologicDiscontinuities
- Deep Faults/Fractures

Top of Queenston Bedrock

Precambrian Basement

Seismic Reflection

Geophone String

Measure **DEEP** bedrock features

Seismograph

Seismic Reflection Results IWCS

Mid-Queenston Reflector

- Seismic Pressure Points
- Geologic Discontinuities
- Deep Faults/Fractures

Seismic Reflection and MT Conclusions

- **♦ Soil/Bedrock Interface Identified**
- Geologic Discontinuities Identified
- No Deep Faults/Fractures Identified
- **♦ No Seismic Pressure Points Identified**

IWCS-SPECIFIC CONCERNS-Voids or Caverns

- **♦ Key Technologies EM and EI:**
 - Voids have an infinitely high resistivity.
 - Voids have "0" conductivity (EM).
- ◆ No "Extreme" values were measured.
- Conclusion: No Voids or Caverns.

IWCS-SPECIFIC CONCERNS-Cutoff Wall Assessment

- Key Technology EI
 - Traverses every10 meters
 - Generally north of the buried building area

S

IWCS-SPECIFIC CONCERNS-**Cutoff Wall Assessment**

- **Cutoff wall represented by increased resistivity**
- **♦** Conclusion: No significant discontinuities (breaches) observed in data; however....
- Variations in resistivities observed
 - attributed to adjacent material (interferences) and
 - variations in composition (clay type/compaction)

IWCS-SPECIFIC CONCERNS-Water Saturation in the WCS

- Key Technology Shear Wave Seismic Refraction
 - Shear waves do not refract at water surface
 - Compressional waves refract at water surface
- ◆ Performed Assessment in "Quiet" Area

Seismic Comparison

Distance along Line (feet)

260 ft

Compressional Wave Data

Water Below Landfill is 3 feet below the foundation of Building 411

Top of Queenston Velocities suggest weathering/fracturing

EM Results of the NFSS IWCS

Conductivity (mM/m)

Quadrature Phase

Drain Pipes

Conclusion:

No Contaminant Plumes Interpreted Present

N

S

Geophysical Conclusions

Electromagnetics (EM-31, EM-61) and Magnetometer

- Delineated lateral extent of landfill contents and metallic debris (buildings, bulldozer, etc.)
- Geospatially located Building Foundations within IWCS
- ♦ Identified metallic debris in Bays B and C of Building 411
- **♦ Identified metallic debris outside building footprints**
- **♦** Confirmed rebar-reinforced walls and floor in Building 411
- **♦** Confirmed lateral extent of 1991 drum addition to IWCS
- Confirmed no voids or areas of increased water saturation within IWCS

Geophysical Conclusions (cont'd)

Electrical Imaging (EI)

- Determined that the clay dike appears competent
- Identified most likely vulnerable areas of surrounding clay dike
- Delineated vertical and lateral extent of landfill contents
- Delineated vertical and lateral extent of metallic debris
- Confirmed no voids or areas of increased saturation within IWCS
- Identified areas of potential increased water saturation outside IWCS
- Delineated heterogeneity in landfill bottom

Magnetotellurics (MT)

- Confirmed no deep faults, fractures, or seismic pressure points near IWCS
- Delineated variations in weathered and un-weathered bedrock elevations

R

Geophysical Conclusions (cont'd)

Seismic

- No significant lateral geologic discontinuities
- No faults/fractures/seismic pressure points near IWCS
- Confirmed stagnant water table beneath IWCS (3 feet below Building 411)
- Confirmed no areas of increased saturation within IWCS
- Delineated weathered and un-weathered bedrock topography
- ♦ Identified a bedrock "sag" outside IWCS boundaries

IWCS-Baseline Integrity

- No voids interpreted in data Implies no significant deterioration of the landfill
- No interpreted contaminant plumes Still stable and intact
- No "unusual" conditions interpreted Other than it is a reasonably well organized landfill.
- Conclusion-No immediate, obvious concerns for IWCS integrity.

Acknowledgments

- R. Hoover
- ♦ S. Eichelburger
- G. Fields
- ◆ C. Fontana
- ♦ A. Glovelovich
- ♦ J. Hasbrouck
- ♦ J. Herman
- ◆ J. Lindaw

- ◆ L. Pastor
- **♦ W. Saunders**
- B. Stahl
- ♦ H. Steffe
- ♦ J. Warren
- ♦ B. Wappman
- P. Yesconis